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Leja Points for Cantor-Type Sets

A. GONCHAROV

We show that the sequence (z,) of points used in [3] for construction
of basis in the space of Whitney functions on Cantor-type sets, locally
satisfies the Leja condition.

1. Introduction

Given a compact set K we take the points a;, a2 € K with |a; —az| = diamK
and then inductively define a,, n = 3,4,..., as a point (in general it is not
unique) that provides the maximum modulus of the polynomial (z—ay) - - (z—
@,—1) on the set K. In this way we get Leja points, which are important in
potential theory since they approximate the equilibrium distribution on K (see,
e.g. [4]).

In [3] a method was suggested to construct a Schauder basis in spaces of
functions given on a Cantor-type set K. The partial sums Sy(f) of the basic
expansion of a function f are the polynomials that interpolate f locally at
certain points from a fixed sequence (z,). In the case of polar Cantor-type sets
Sn(f) are interpolating polynomials on the whole set K.

In [1] the same sequence was used for the construction of a continuous
linear extension operator acting from the space of Whitney function on the
Cantor-type set into the space of C*°-functions defined on the whole space.

Here it is shown that although (z,) is not the Leja sequence, the points z,,
locally satisfy the Leja condition.

2. Uniformly Distributed Points

Here as in [1] we consider the Cantor set K (%),

Let (15)52, be a sequence such that Ip = 1, 0 < 2l,41 < l;, s € N. Let
K be the Cantor set associated with the sequence (I,), that is, K = (-, Es,
where Ey = I, 0 = [0,1], E, is a union of 2° closed basic intervals I; , of length
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l; and where F,; is obtained by deleting the open concentric subinterval of
length hy = l; — 21541 from each I, 7 = 1,2,...,2°. We call two intervals
Iyj 1,541, I2j,s+1 adjacent if they are derived from the same interval I; .

Fix @ > 1 and I, with 45; <1, 41§ ' < 1. Then I, > 41, for any s. We
will denote by K(®) the Cantor set associated with the sequence (I,), where
lp=1land l;4; =1lF=---= lf‘s for s > 1. For a fixed s we denote by K, the
set K(®) N [0,1,]. The set K(®) is polar if and only if a > 2 (see, e.g. [2]).

Let = be an endpoint of some basic interval. Then there exists a minimal
number k (the type of z) such that = is the endpoint of some I ,, for every
m > k.

Given K, let us choose the points z1,z2,... by including all endpoints of
the basic subintervals of K, using the following rule of increase of the type.
At first we take two points of type < s : z; = 0,z = l;. These points are
the endpoints of two basic intervals I; ;41 and I ;41. Other endpoints of these
intervals have type s + 1. We include these points in the sequence in the same
order as the previous points. That is 3 = l541,24 =I5 — ls1. After the n-th
step we form the points (z;)?" from all endpoints of type < s +n — 1. We have
2™ basic intervals of length [, ,. One of the endpoints of any interval I; 5, is
zy. Then we choose the other endpoint of this interval to be zfon.

The points chosen in this way are uniformly distributed in the sense of the
following definition. Let

N=2" 42""14...42" with 0<rp<?r < <7y

and N ordered points (z3)¥ C K, be given. We divide them into m + 1
groups. The group X,, contains the first 2" points, the next 2"~ points are
included into the group X,, 1, etc. We say that the ordered points (z)Y are
uniformly distributed on the set K, if the following holds. Every basic interval
Iisir., 3 =12,...,2™, contains exactly one point from X,,. The points of
X, occupy concrete 2" basic intervals I s, 1. Other 2" basic intervals of
length I, 1 are free of points from X,,,. Then the remaining 2"™~1+...4270
points can occupy only these free intervals, and moreover, 2"~ points from
Xm—1 are uniformly distributed on 2"~ intervals I s, _, and the remaining
2"m-2 4 ... 4+ 2" points can occupy only the intervals I; 44, ,+1 that do not
contain points from X,,_1, etc.

If the points (zx)Y are uniformly distributed on K, then the numbers of
points z in two basic intervals I; 4, I; 4 of equal length are the same or differ
by 1. To prove this let us fix the minimal r, with l,, < [;. Then I;, and
I; 4 contain the same number of points from X, k =m,m —1,...,q. On the
other hand, since l;4, _, > l,, any interval of the length /; can contain only
one point from UZ " X.

Given points (z3)Y let ey denote the polynomial (z — z1)--- (z — zn)-

Lemma 1. Suppose that N, satisfies 2 1N, < 1. Then the first N, N <
N,, Leja points are uniformly distributed on the set K,.
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Proof. By direct computation one can check that for any K, s > 0, the
first 9 Leja points are just the points (zj)} chosen by the rule of increase of
the type. Therefore we can assume N, > 10. The proof is by induction on N.
Suppose (zx)Y are uniformly distributed on K,, with N = 2" 4 2"=-1 4 ... 4
270 < N,. Consider at first the case 7o = 0and N +1 =2" ... 4 2" 4 2P
with 1 < p < 7, < 7. Here in the decomposition of N we have r, = k for
k=0,1,...,p— 1. The last point zx belongs to some interval of length ;1.
Then another interval I}, ;11 covers two intervals of length I, >, but it contains
only one point from X; = {zny_2,zn_1}, since these points are uniformly
distributed. By I;, ,+2 we denote the interval free of points from X;. This
interval contains only one point from X5, therefore there exists I, 5413 C I}, 542
such that I;; ;.3 N X> = 0. We continue in this fashion to obtain the interval
I, s+p that does not contain points of UZ;(I)Xk. Any interval I ;4, contains
(2" +---4+27°)27P points from Up—, Xk and if j # jp, then it contains exactly

one point from Ui;(l)Xk. Let us show that there exists € I, s, such that

len ()| > len(y)| for any y € Ljaip J # Jp-

This will mean that the next Leja point zn1 belongs to I, s+, and the points
(zx)N*! are distributed uniformly on K,.

Let I, 51, be the adjacent to I;, ., interval. There are 2"»"? intervals of
length [;,, covered by I;, ,.,. Each of them contains exactly one point from
Xp. Let us take J, = I; 51, which is the most distant from I, ;1 ,. One of the
subintervals I ; »,11 does not contain points from X,. On this subinterval we
take Jp11 = I; s1r,,,, which is the most distant from = € J, N X,,. Continuing
in this way we get a nested family of intervals J, = I; 54, such that J;, contains
some point z; € X and Ji41 is the most distant from z;. Eventually we take
z as the endpoint of J,,, with |z — 2| > ls4r,, — lstr,,+1. Here &, € Iy N Xy

Let mp(z) = [ |z —j], k=0,...,m. Then |lex(z)| =[] mx(z).
z;€EXp 0

Since the points (zz)YV are uniformly distributed and due to the choice of
z, we get mi () > hoyr hssr,—1h2,,, o h2™ " for k =0,...,m. Therefore,

p—1

-1
H me(z) > hs+p71h§+p72 T hgl’ :
k=0

On the other hand, for any y € I;s4p, j # jp and for k = p,p+1,...,m we
rp—1

get mk(y) < ls+rkls+rkfll§+rk—2 . "lg *

p—1

II mx(y), let us consider the worst case, when I}, , and I, ., are adjacent.

. In order to get an upper bound of

p—1

-1
H mr(y) < ls+plz+p—2 2
k=0



138 Leja Points for Cantor-Type Sets

The sequence (I /hy) decreases, as is easy to check. Therefore,

len (¥)|/len ()| = H T (y)/ k(@) < lstp/hstp—1 (ls/hS)N372
By condition we get

l8/hs = (1 - 213_1)_1 < (1 - )_1 =1+

2
N, N;—2

and (I5/hs)N:=2 < €2. Also,

1

ls+p/hs+p—1 < lf:_l/(l - 21:?_1) < N, -2

Therefore,

len (y)l/len(2)] <

N, —2 <1, since Nz >10.

Similar arguments apply to the case ro = 0, N + 1 = 22",

If ro > 0, then we get 27°*! intervals I; 64+ ro+1 such that 27 of them con-
tain a point from X, and the remaining 2" intervals are free of points from
Xo. Any interval I; ;.41 contains the same number of uniformly distributed
points from U}’ ; Xj,. Arguing as above, we see that the next Leja point zn;
belongs to some of the free intervals I; 41,11, therefore (zz)N ™' are uniformly
distributed. O

Lemma 2. Let s be such that 11 <1/6 and N = 2" +v with 0 < v < 27,
Suppose that the points (zx)¥ of type < s + n are uniformly distributed on
K,;. Then the polynomial ey is monotone on any basic subinterval I; 4,
containing one point from (zz)N

Proof. We see that v out of 2" intervals of length [, ,, contain two points
from (z1)Y, whereas 2" — v of them contain only one such point. Fix any
interval I; ;4 of the second type. Let I; s p 3 @, with some m < N. Let
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The adjacent to I ;4 interval contains at most two selected points. Continuing
in this manner, we see that

N
Y (@—a)t <2k, 4R, o+ 2R
k=1,k#m

Since here l;, > 67,1, for ¢ > 1, we get hy > 21; and
n
9
k — —
22 hs+1nfk < Els—&n—l'
k=1

On the other hand, |z — .| < ls4n. Therefore the expression in the square
brackets in (1) is positive and e}y does not change its sign on I s p. O

Similarly one can show that ey is monotone on any basic interval I; ;4 1,
j=1,...,2""L

3. Distribution of First Leja Points

Let us specify the location of the points (z3)Y, selected by the rule of
increase of the type, where as before N = 2™ 4 2™-1 4 ... 4+ 2" We define

g — 0, k=m
T Vet —drsr fork=m—1,m—2,...,0.
Therefore,
di = l8+7'k+1 - l8+7'k+2 +-t (_l)mik+1ls+rm-
Then X,, consists of all endpoints of the intervals I sy, 1 = [ag.m),bgm)],
that is X,,, = {ag.m),bg.m)}?;mlfl. By induction one can show that for any k,

0 < k < m, we have X; = {ag.k) + dk,bg.k) - dk}gzl_l, where ([ag.k),bg-k)])?l—l
is the family of all basic intervals of length I, _1 on K . The formula gives
only the contents of X}. Inside of X; we put the points in the order: agk) + dg,
o) _ ds, p(k) (k)

N -2 — dg, Qg2+ dy, and so on.
Theorem 1. Let 27! < 1/6 and I"'N, < 1. Then the first N, Leja

points of the set K, can be taken by the rule of increase of the type.

Proof. Suppose the first 2" Leja points are all endpoints of type < s +
rm — 1 on K,. Every interval I ., contains some z € X,, as its endpoint.
We arrange increasingly the other endpoints of I; sy, , 7 = 1,...,2™, and
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denote them by ¥ = (y,). Lemma 1 and Lemma 2 imply that the next 2™
Leja points have to be taken from Y.

Given y € Y let us set distances |y — x|, zx € Xy, increasingly and denote
them by (px(y))2.;. For example,

pl(yl) = l8+7'm1
p2(¥1) = losr,, 1= lsgr,s

By symmetry, let us consider at first y € I s41. Clearly, pr(y1) > pr(yn) for
E <2 n=23,...,2""1. Therefore, we can take the next Leja point
as y1 = lgyp,,. Analogously, zarm 2 = lg — lg4p,,. By Lemma 1, the point
Tarm g gets into I; 5o with j = 2 or j = 3. Without loss of generality we
can take I ;49 and @ = l;11 — ls45,,. Let us show that |e(z)| > |e(y)| for any
y € YNI; 2. Here e denotes the corresponding polynomial of degree 2" + 2.
For a fixed y we have ¢ = y + d with l;4, 1 — 2ls4,, < d <lsyo — 20544,
We represent e as the product Py P Pg, where

P(z)=1I(z —z) for zp € Iz 542,

Py, corresponds to 22 4+ 1 roots of e on I1,542 and Pg does so for the roots
on the right, that is, on I ,;;. Since the point z is at the same distance or
closer than y to the endpoints of I5 512, we get |P(z)| > |P(y)|- Thus,

:ZEZ;:S H (1_a:—da:k) H (1+a:kd—a:)'

e €l 42 rr€l2 541

We have z — 23, < lg41 in the first product and z — = > h, in the second
one. Therefore,

1+ —

d \2"m 1 d\2"m T+
W)l .- (1 _ (

le(z)] lst1 hs
and J
InR< (2™ 1 4+1)— — (2" 2 4+1) <0,
hs ls—i—l

as is easy to see. Therefore, ®orm 3 = lg41 — lstr,,, and similarly, zorm 14 =
lg—ls11+1s4r,. We continue in this fashion to put the next 2" -1 Leja points
as the points from X,, ; taken in the corresponding order.

Let us show that the next 2”2 Leja points can be chosen only as points
from X,,_». Set M = 2"~~"=-171  Every interval I; s4r, , contains 2M
points from X,,, and one point from X,, ;.

Let us fix any basic interval I; ;4 _, = [a,b]. It contains some z, € Xp,_1.
The interval [a,b] is surrounded by two gaps. If the right gap has length
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hsir, _,—1, then the left gap is larger. In this case 3 = a + dy,—1, Otherwise,
zr = b —dpy—1, Without loss of generality let zx = a + d,,—1. Let us show
that the other point £ = b — d,,,_; will realize the maximum modulus of the
corresponding polynomial e of degree 2" + 2"~ on [a,b] N K,. We want to
prove that |e(z)| > |e(y)| for any y € Y N[a, b], y # . Since the polynomial e is
monotone on [z, b] and e(b) = 0, it suffices to consider y < z. By Lemma 1 we
can restrict ourselves to study only those y on the right subinterval of length
lstr, ,+1. Thus, z =y + d with

ls+rm71 - 2ls+rm <d< ls+rm71+1 - 2ls+rm-

As before, we factorize e into the product P;, P Pgr. Here Pj corresponds to
the roots of e on the left. We have there at least the interval Io;_1 54p,,_1+1,
containing M +1 points from X,,, UX,,,_1. The second term P is the polynomial
with M roots on I3j s, ,+1 and Pgr stands for all other roots on the right
from [a,b]. As above, |P(z)| > |P(y)|. For the zeros from I3; 1 s4r, ,+1 We
have ¢ —z; <l;1, _, and

BT (1-4) < (- )"

8+rm_1

Here we consider only zeros on I5j_1 s4p, _,+1 and neglect the other possible
left zeros.

On the other hand, on the right we have 2\ + 1 points z; with z; —z >
hstp,._1—1 and at worst 4M + 2 zeros of e with ; —z > hgyp ,_, 2, and so
on. Therefore,

IPR(y)Izl—[(1+ d ) < (14 d )ZM“(H%)“M“...

|PR(m)| rj—<T $+T_1—2

Therefore,

rm,171
ple@l  (M41)d @M+1)d 2eM+1d 2 (2M +1)d

le(@)] = lstrns hotrm_i—1  Patr,_1—2 hs

By condition, hq > 41441 > 4hgt1. Therefore,

> 2k rht < 2m,t
k=s

and M+1)d 2(2M +1)d
W@l (M+1d | 2eM+1)

|€(1})| o l8+7‘m—1 hs—i—rm_l—l '
The expression on the right side is negative with enough to spare. Even if
we distribute some points from X, _» and fix the interval I; ;,  ,, which does
not contain these points, then the new polynomial e will attain its maximum
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modulus on this interval at the corresponding point from X,,_5. Thus for
2mm-1 intervals I; 51, , = [a,b] we have 2"—'*1 points of type a + dy—1,
b—d,;—1. A half of them forms X,, ; and the remaining 2"~ -1 points z; are
the only possible candidates for the next 2"m~! Leja points. We arrange them
in increasing order. Then

The configuration of the previous selected points is the same for any interval
I s4r,,_,. Therefore, pp(2z1) = pr(z,) for k < 2M + 1 and for all n. But
for the next k the first and the last points z have advantage over the other
zn. Let us take z; as the next Leja point zgrm y27m-1,; and, by symmetry,
Torm y2'm-142 = lg — dp, 2. Arguing as above, we see that the next points
from X,,_», taken according the rule of increase of the type, satisfy the Leja
condition.

The same conclusion can be drawn for points from X,,_3,... , Xo. Suppose
the points from X,,,U- - -UX,,_y, are chosen. Fix any interval I; ,1, . = [4, B].
It covers two adjacent intervals [4, By] and [A3, B] of length l;1, _, 1. The
interval [A4, B] contains one point z; € X,,_. Let zp € [A, Bi], therefore
z = A+ d,,_r. The interval [4, B] covers M; = 2" —++1~"m—+ intervals [aq, b,]
of length lstrp_sq- Bvery interval [aq, bg] contains one point from X,,, 11 and
this point is of the type ag+dp, —g+1 or by—dp—p+1. By induction, the next Leja
point can be chosen only from the remaining M; points. And what is more, the
first on [A, B] point € X,,,_j has been taken by this time as by — d,, g1 =
a1 + dm—k. By Lemma 1 we can consider only M;/2 corresponding points on
[A2, B]. The point aps, + dm—k+1 = by, — di—x = B — dy,—1. has advantage,
since it is located closer than all its rivals to a large gap. Therefore, the only
possible candidate for a Leja point on I s, , is the point symmetric to the
point z;. We denote all such points by w,:

wy = dm—k—l:

We will choose from them the next Leja points. Comparing distances pg(w,),
we see that the next 2"m-*-1 Leja points are just the points of X,,, 1, taken
by the rule of increase of the type. O

Remark. For arbitrary large a and s the sequence (zy), chosen by the rule
of increase of the type, is not the Leja sequence on K.
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Proof. Suppose N = 2™ points z; are chosen according the above pro-
cedure. They are all endpoints of type < s + n — 1 on K,. Also we take
N1 =lsyn and 22 =1 — l44p. Then

en+2(z) = en(z) (z — zn+1)(Z — Tv42).
Fix y =ls42 — ls4n. Let us show that

lent2(y)| > lent2(zns)], where @niz=lsp1 —loin

As before, let
N
len(z)| = [ ox(z) with pi(z) = |z — ;| T
k=1

Then pi(zn+s) = pr(y) for k =1,2,..., . If & <k < I then pp(znys) =

? 4"
pr(y) + losz — 2lo1n and pp(znys) = pe(y) — log1 + loga for § < k < N.
Therefore,

le(y)] H Pr(Y) H Pr(y) loya —2loin ls — sy (2)
) Pk

le(zn+3)] Nop<XN pr(TN+3 NZR<N (®N+3) lst1 — 254 Ls — ls+1‘
4 =2 2 =

In the first product,

pk(y) > 1— l8+2 _ l8+2 >1— é ls+2
Pr(Y) +lsi2 — 2ls4n pr(y) +lsy2 log1 —lgpo ™ 3 lst1
For the second product,

Pk (y) 14 lot1 — ls+2‘
Pe(y) = lss1 + Loy ls
The last two terms in (2) can be estimated from below by 1 [%/}. Therefore,
le(y)] | 4 . 1\ Lyt — lypo\ N/2
T T I W (PR AL A L L
|€(:Z}N+3)| > 2 s+1 3 s+1 + ls ( )

Since
4 Lyt — L2\ 2
(1-5em) (e =) >,
3 I,

the expression on the right-hand side in (3) is greater than 1 for NV large enough.
Therefore, the point 3 cannot be taken as the next Leja point. O
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What Is the Size of the Lebesgue Constant
for Newton Interpolation?*

Let X be an infinite triangular array of nodes in [—1,1]. Let A,(X) denote
the n—th Lebesgue constant, that is, the uniform norm of the Lagrange inter-
polating operator defined by the (n + 1)—st row of X. It is well-known that
the sequence (A, (X)) has at least logarithmic growth and that the Chebyshev
array T is close to the optimal choice. Now suppose that the array X is mono-
tone, that is, any row of X consists of the previous row plus one more value.
Is it possible to reach a polynomial growth of the sequence (A, (X)) for some
array X? Affirmative answer allows to construct interpolational topological
bases for, example, in the space C*°[—1,1]. The good choice for X gives the
nested family of zeros of Chebyshev polynomials from some subsequence, for
example (Ts-), or the Leja sequence, or another sequence approximating the
equilibrium distribution.
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